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1. Description of task 
 
Task 6.2 In vitro dosimetry modelling and experimental design; (IOM, Harvard, QSAR Lab, 
UNIPI, UNamur, RIVM); M1-33 
1. QSAR modelling will be carried out, post-processing, (QSAR Lab, UNamur) to construct a 
relationship between ENM physico-chemical characteristics with the biological responses and design 
criteria, using the existing data from earlier projects (e.g. MARINA, SUN, NANOSOLUTIONS) – now, 
part of the PATROLS database. Later, when PATROLS data become available, they will be used to 
validate the QSAR model predictions. 
2. The multiple path particle dosimetry (MPPD) modelcalculates the deposition fraction of inhaled 
particles in the different region of the experimental animals (including rat) and human (age 3 month up 
to adult) lung using the particle physico-chemical characteristics, the respiratory tract architecture, the 
physiological breathing pattern. The MPPD model has already been developed, user-friendly MPPD 
software that is available free to the public and used in many EU nanosafety projects. MPPD 
calculates deposition and clearance simultaneously for up to 4 lognormal distributions In PATROLS, 
the model will be used to calculate the deposited dose in different regions of the lung for the chosen 
ENM. Partners in this task have close connections with the developers of the model should 
adjustments be needed. 
3. The fluidic model is a mathematical representation of the fluidic bioreactor prototypes of WP3 and 4 
and will be used to inform their design and construction. The model will be parameterised for different 
bioreactor heights (for identification of optimum basal compartment height which ensures adequate 
oxygen and optimum apical compartment height for uniform particle deposition), pneumatic pressures 
(for determining membrane deformation according to its elastic properties and the amount of media to 
displace) and media flow rates (for shear stress calculations, which are necessary to minimize cell 
damage). The model will help in determining the optimal size for the lung model device to ensure it is 
easy to manage under a hood and in an incubator and still has a sufficiently small media height to 
ensure a physiological lung oxygen supply but with a sufficient height to allow uniform ENM aerosol 
deposition. To implement model simulations CFD (computational fluid dynamics) will be coupled with 
mass and energy transport to determine the oxygen concentration and average temperature on the 
apical and basal side of the bioreactor. For the WP3 bioreactor, we will simulate the formation and 
deposition of a ENM cloud (i.e aerosol) on a membrane using multiphase modelling. Moreover, we will 
use FSI (fluid-structure interaction) to evaluate the motion of the flexing membrane as a function of 
applied pressure. Furthermore, to aid experimentalists in designing more realistic biomimetic in-vitro 
systems, UNIPI will also develop allometry-scaling based design criteria such that in vitro experiments 
recapitulate quarter power “metabolically-supported functional scaling” using the methods outlined in 
Ahluwalia (Scientific Reports, 2017,7). These criteria, specifically cell density and the size of 3D 
constructs developed in WP3 and 4, will be used as a baseline by experimentalists to design cell 
culture systems. 
4. In FP7 SUN, a kinetics model was developed by IOM to describe the dose-response in simple in 
vitro models. The model describes the distribution of the deposited dose into the in vitro cell 
population. IOM will further adapt this model for the more sophisticated in vitro models developed in 
PATROLS with several interacting cell populations. Harvard will simulate the deposition of ENM in 
these physiologically relevant in vitro environments using their published model which will help in 
calculating the exact dose interacting with the cells. A graphical user interface (GUI) will be 
constructed by IOM as user-friendly front end to the Harvard model to facilitate its use by the 
experimental partners. 
The benchmark dose approach [Slob; Crit Rev Toxicol 2016,2,1-10] will also be carried out, by RIVM, 
in parallel for comparison. 
The MODA (MOdelling DAta) for the 4 models will be submitted as a deliverable by M3 of the project. 
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2. Description of work & main achievements 
2.1 Introduction 

Computational modelling methods provide useful tools that support the development of 
novel materials (including nanomaterials) (Mikolajczyk, et al. 2016; Sikorska, et al. 2016) as 
well as assist in their risk assessment (Gajewicz, et al. 2012). Wide opportunities offered by 
these techniques attracted the interest of scientific communities and industry. Benefits from 
the application of modelling techniques in the risk assessment of nanomaterials and 
directions for further development were recently highlighted in publications summarizing 
discussions at the level of the EU NanoSafety Cluster (Puzyn et al., 2018) as well as in the 
“EU-US Nanoinformatics 2030 Roadmap” worked out within the joined EU-US initiative 
(https://www.nanosafetycluster.eu/Nanoinformatics2030.html). In parallel, the European 
Materials Modelling Council (EMMC) declared that, due to significantly reducing R&D time 
and costs, the modelling would have great impact on innovation and improvement of 
competitiveness and sustainability of industry (Baas 2017; Gerhard and Christa 2016). 

In order to make the modelling methods more useful for industry, in 2017 the EMMC 
proposed, the standard scheme for collecting the information across the computational 
models (Baas 2017) named the MOdelling DAta fiche (so called MODA) (Baas 2017). The 
general objective of the proposed scheme is to introduce a uniform and informative 
description of the models. In principle, the provided information should be as instructional as 
possible to make it usable for the industry. It should also allow for linking particular models 
together and, consequently, using outputs from one model as input data for another one.  

Proposed MODA templates were developed separately for: (i) physics-based models, 
and (ii) data-based models. According to the EMMC ontology, “a physics-based model” 
refers mainly to models and simulations based on physics/chemistry equations describing 
different levels of materials composition: (a) electronic models describe the behaviour of 
electrons as quantum mechanical waves, (b) atomistic models describe the behaviour of 
atoms, (c) mesoscopic models describe parts of molecules, and (d) continuum models 
describe the behaviour of a continuum in a finite volume (Baas 2017). “A data-based model” 
term refers to the approaches that describe relationships between data from the experiment 
or databases and, so-called, descriptors or predictor variables (Baas 2017). 

The main goal of the activity described in Deliverable 6.7 (D6.7) was to verify the 
applicability of the MODA tools (templates) and ontology proposed by EMMC modelling for 
models that are under development within the PATROLS project. 

2.2 Methodology 
The MODA templates provided by the EMMC (Table 1-2) were applied to describe 

models planned to be developed within PATROLS. In the first step, a model has to be 
classified a physics-based or data-based one. In the second step, the model has to be 
described in detail with use of the appropriate MODA template (physics-based MODA 
template or data-based MODA template). Physics-based models should be documented in 
four chapters (Table 1), whereas the description of data-based models should include three 
chapters (Table 2). 
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Table 1. MODA template for physics-based models (https://emmc.info/moda/) 

  1 ASPECT OF THE USER CASE/SYSTEM TO BE SIMULATED  

1.1 

ASPECT OF THE 
USER CASE TO BE 

SIMULATED 

 

Describe the aspects of the user case textually.  

No modelling information should appear in this box. This case could also be 
simulated by other models in a benchmarking operation! 

The information in this chapter can be end-user information, measured data, 
library data etc.  

Simulated input which would have been calculated by another model should 
not be included (but in chapter 2.4)  

Also, the result of pre-processing necessary to translate the user case 
specifications to values for the physics variables of the entities can be 
documented here.  

1.2 MATERIAL 
Describe the chemical composition, and the values used for properties and 
from which database these are taken. If pre-processing was needed please 
specify the methodology. 

1.3 GEOMETRY 

Size, form, picture of the system (if applicable)  

Note that computational choices like simulation boxes are to be documented in 
chapter 3. 

1.4 TIME LAPSE 

Duration of the case to be simulated. 

This is the duration of the situation to be simulated. This is not the same as the 
computational times to be given in chapter 3. 

1.5 

MANUFACTURING 
PROCESS OR IN-

SERVICE 
CONDITIONS 

If relevant, please list the conditions to be simulated (if applicable). 

These can be boundary, initial and global conditions. 

E.g. heated walls, external pressures and bending forces.  

Please note that these might appear as terms in the Physics Equations (PE) or 
as boundary conditions, and this will be documented in the relevant chapters. 

Please specify the values used for parameters and from which database these 
are taken. If pre-processing was needed please specify the methodology. 

1.6 PUBLICATION ON 
THIS DATA 

Publication documenting the simulation with this single model (if available and 
if not already included in the overall publication).  
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2 GENERIC PHYSICS OF THE MODEL EQUATION  

2.0 

MODEL TYPE 
AND NAME 

Model type and name chosen from RoMM content list (the PE).  

Please do not insert any other text although an indication of the Materials Relation 
(MR) is allowed. 

2.1 MODEL 
ENTITY 

The entity in this materials model is <finite volumes, grains, atoms, or electrons> 

2.2 

MODEL 
PHYSICS/ 

CHEMISTRY 
EQUATION  

PE 

Equation Name, description and mathematical form of the PE  

In case of tightly coupled PEs set up as one matrix, which is 
solved in one go, more than one PE can appear.  

Physical  
quantities  

Please name the physics quantities in PE, these are parameters 
(constants, matrices) and variables that appear in the PE, like 
wave function, Hamiltonian, spin, velocity, and external force.    

Please specify the values used for parameters and from which 
database these are taken. If pre-processing was needed please 
specify the methodology. 

2.3 

MATERIALS 
RELATIONS 

 

Relation Please give the name of the material relation and which PE it 
completes. 

Physical 
quantities/ 

descriptors 
for each MR 

Please give the name of the physics quantities, parameters 
(constants, matrices) and variables that appear in the MR(s) 

Please specify the values used for parameters and from which 
database these are taken. If pre-processing was needed please 
specify the methodology. 

2.4 

PHYSICS 
FORMULATION 

OF THE 
CONDITIONS 

Please give the physics equations used to express the conditions (e.g. thermostats 
in MD) 

2.5 

SIMULATED 
INPUT 

Please document the simulated input and with which model it is calculated. 

This box documents the interoperability of the models in case of sequential or 
iterative model workflows. Simulated output of the one model is input for the next 
model.  Thus, what you enter here in 2.4 will also appear in 4.1 of the model that 
calculated this input.  

If you do simulations in isolation, then this box will remain empty.  
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3 SOLVER AND COMPUTATIONAL TRANSLATION OF THE SPECIFICATIONS  

3.1 NUMERICAL 
SOLVER 

Please give name and type of the solver 

e.g. Monte Carlo, SPH, FE, …iterative, multi-grid, adaptive,… 

3.2 SOFTWARE TOOL Please give the name and if this is your own code, please specify if it can be 
shared with a link to website/publication. 

3.3 TIME STEP 

If applicable, please give the time step used in the solving operations. 

This is the numerical time step, and this is not the same as the time lapse of the 
case to be simulated (see 1.4) 

3.4 

COMPUTATIONAL 
REPRESENTATION  

 

PHYSICS 
EQUATION, 
MATERIAL 

RELATIONS, 
MATERIAL 

Computational representation of the physics equation, materials 
relation and material. 

There is no need to repeat user case info. 

“Computational” means that this only needs to be filled in when 
your computational solver represents the material, properties, 
equation variables, in a specific way. 

3.5 
COMPUTATIONAL 

BOUNDARY 
CONDITIONS  

If applicable. 

Please note that these can be translations of the physical boundary conditions set 
in the user case or they can be pure computational. 

3.6 
ADDITIONAL 

SOLVER 
PARAMETERS 

Please specify pure internal numerical solver details (if applicable), like 

• Specific tolerances 
• Cut-offs, convergence criteria 
• Integrator options 
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4 POST PROCESSING 

4.1 

THE PROCESSED 
OUTPUT  

Please specify the post processed output. 

If applicable then specify the entity in the next model in the chain for which this is 
calculated: electrons, atoms, grains, larger/smaller finite volumes. If systematic 
coarse graining is used, please specify. 

In case of homogenisation, please specify the averaging volumes. 

Output can be calculated values for parameters, new MR and descriptor rules 
(data-based models) 

4.2 

METHODOLOGIES Please describe the mathematics and/or physics used in this post-processing 
calculation.   

In homogenisation this is volume averaging. But also physics equations can be 
used to derive e.g. thermodynamics quantities or optical quantities from Quantum 
Mechanic raw output. 

4.3 MARGIN OF ERROR Please specify the margin of error (accuracy in percentages) of the property 
calculated and explain the reasons to an industrial end-user. 
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Table 2. MODA template for data-based models (https://emmc.info/moda/) 

1 USER CASE  

1.1 

ASPECT OF THE 
USER CASE TO BE 

CALCULATED 

 

Briefly describe context/purpose of the modelling.  

1.2 MATERIAL Specify, what kind of material will be used for model development (provide 
references). 

1.3 STRUCTURE Specify, what information about the material’s structure is required. 

1.4 TIME LAPSE If applicable, please give the time perspective used in the simulation. 

1.5 

MANUFACTURING 
PROCESS OR IN-

SERVICE 
CONDITIONS 

Please specify any relevant external conditions for manufacturing/using/studying 
the modelled nanomaterials (e.g. dispersion, properties of the system). 

1.6 

PUBLICATION ON 
THIS ONE 

DATAMINING 
OPERATION 

Refer to a publication documenting the simulation with this single model (if 
available and if not already included in the overall publication).  

 
2 THE DATA-BASED MODEL 

2.1 MODEL NAME/TYPE Model name/type 

2.2 DATABASE AND 
TYPE 

INPUTS 

• Provide name, short description and type 
(continuous, nominal, ranks) of the 
parameters/variables/data used as model input(s). 

• Specify any data pre-processing procedures. 
• Specify the source of input data (e.g. database). 

OUTPUTS 

• Provide name, short description and type 
(continuous, nominal, ranks) of the 
parameters/variables/data generated as the model 
output(s). 

• Specify any data post-processing procedures  
• Specify the source of output data (e.g. database) 

used for training/validation, if any. 

2.3 EQUATION(S) 

HYPOTHESIS Specify the working hypotheses to be verified/described by the 
model. 

PHYSICAL 
QUANTITIES 

Please name the quantities that are parameters (constants, 
matrices) and variables that appear in the model’s equation(s) 
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3 COMPUTATIONAL DETAIL OF DATAMINING OPERATION 

3.1 NUMERICAL 
SOLVER 

Specify mathematical/statistical method of modelling (e.g. multiple linear 
regression, decision tree) 

3.2 SOFTWARE TOOL Provide name of the software to be used. If this is your own code, please specify, 
whether it can be shared (with a link to website/publication). 

3.6 MARGIN OF ERROR Please define the variables/parameters used for assessing model quality and 
briefly describe the validation procedure. 
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2.3 Results and discussion 

2.3.1.	Descriptions	of	individual	models	

The PATROLS MODAs were prepared with using templates originally developed by the 
EMMC (Tables 1-2). There are twelve types of models that will be developed in the 
PATROLS project. Six models were classified as physics-based models, whereas the other 
six – as data-based models.  

The physics-based models are: 

• Computational Fluid Dynamics (CFD) transport models,  
• Fluidynamics models,  
• Physiologically-Based PharmacoKinetic models (PBPK),  
• Multiple-Path Particle Dosimetry (MPPD) models, 
• Molecular structure models, 
• Allometric scaling models. 

The data-based models are: 

• Benchmark Dose Models (BDM),  
• Structure-Activity Relationships (SAR) models,  
• Predictive ToxiGenomics Space models (PTGS),  
• In vitro-in vivo scaling (IVIVE) models,  
• Quantitative Toxicity-Toxicity Relationships (QTTR) models, 
• Quantitative trait-based models.  

Models will be developed in order to include in their applicability domains, as far as possible, 
nanomaterials listed in the PATROLS project (TIER 1). Detailed description of each model 
type is provided in the Appendix_PATROLS MODA.   

2.3.2.	Connections	between	the	models.	MODAs	development	

The modelling techniques listed in Section 2.3.1. were applied to develop two MODAs: 
MODA #1 referring to human toxicity models (Figure 1) and MODA #2 referring to ecotoxicity 
models (Figure 2):  

• The MODA #1 consists of ten interconnected models, which can be clustered into 
three groups: (1) models based on in vitro in isolation data, (2) models based on in 
vivo data, and (3) models that scale the response from lower organisms/cell lines to 
humans. The output of these models will be applied to predict the adverse effect 
caused by realistic doses of nanomaterials for human.  
 

• The MODA #2 contains four models that predict environmental toxicity of 
nanomaterials based on their structures including information about the influence of 
the organism morphology on the measured effects. 
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Figure 1. MODA #1 for human toxicity models. (1) Models based on in vitro in isolation data, 
(2) models based on in vivo data, and (3) models that scale the response from lower 

organisms/cell lines to human (red – user case input; blue – physic-based model; yellow – 
data-based model, dark green – raw output; green – post-processed output). 
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Figure 2. MODA #2 for ecotoxicity models (red – user case input; blue – physic-based 

model; yellow – data-based model, dark green – raw output; green – post-processed output). 
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2.3.3.	Discussion	

The idea of standardising the description of computational models, as it was proposed by 
EMMC, is highly appreciated. According to the proposed scheme, all models should be 
described with the same templates, which makes them more transparent and instructional for 
various users (stakeholders). In consequence, the modelling would be more frequently 
applied by the industry for developing new nanomaterials using a safe-by-design approach. 
Additionally, the MODA illustrates connections between particular models and ensures an 
exchange of data between computational approaches utilized in the project.  

Since the main challenge of PATROLS is to deliver standardized tools to predict adverse 
effects caused by nanomaterial exposure to humans and the environment, the description of 
PATROLS models according to the standardized EMMC MODA scheme was feasible. 
Moreover, the input-output relations between the models allowed illustration of the data flow 
and helped harmonise the modelling work planned within the project.  

All PATROLS models foreseen were attempted to be described using the templates 
provided by EMMC. However, according to the feedback provided by the participants of this 
exercise, both the ontology and the templates require further work and adjustments in order 
to be able to properly incorporate the specifics of the models developed in the PATROLS 
project.  

Participants of this exercise raised several issues related to the filling of the templates 
and concluded that the original instructions provided in the templates require additional 
clarification. Another concern was related to the level of details that should be provided in the 
template. We decided to deliver the MODAs based on general model descriptions, because it 
obviously is not possible yet to describe, at this early stage of the project (the MODA is 
supposed to be delivered in month 3), individual models that will be developed in detail. 
When all models will be developed (more significant information related for individual models 
will be available), the PATROLS MODA should be updated. 

The “Review of Materials Modelling (RoMM)” (Baas 2017) published by EMMC provides 
a detailed description of “physics-based models”. However, the taxonomy proposed for this 
class of models (i.e.: electronic, atomic, mesoscopic, continuous) may be inadequate, when 
considering models developed in PATROLS. For example, it was not clear for us what we 
should describe as a ‘geometry’, since we are not focusing on the properties of materials. We 
noticed that the ontology developed by EMMC refers mainly to predicting properties of the 
materials based on the materials models at various scales (e.g. electronic, atomistic), 
whereas models developed in PATROLS predict properties of the materials based on models 
of various phenomena (e.g. metabolism, physiological transport). These are not only physical 
phenomena, but also biological and physiological ones. In our opinion, the performed 
exercise would open up the discussion on possible revisions of “physics-based models” 
definition and, possibly, on the extension of the classification of models for new types of 
models (e.g. “biology-based models” or “physiology-based models”). 

Surprisingly, “data-based models” and the related ontology are discussed in RoMM at a 
general level with providing only few examples of such models. Since six types of “data-
based models” are planned to be developed in PATROLS, our project would in the future 
contribute to the debate on possible extension of the templates applicability and to the further 
discussion on models’ ontology and classification. 
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3. Deviations from the Workplan 

The MODA should deliver information about the linkage between models, the flow of 
data as well as knowledge on the models that will be exchanged within the project. Thus, 
MODA should be provided for each particular model to be developed in the project. However, 
since the models development is a vital contribution to and an important deliverable of 
PATROLS, it is not possible yet to describe the final models in sufficient detail in such an 
early stage. For example, to develop structure-activity models, detailed information about the 
experimental data availability is required to decide, which calibration method should be used. 
Therefore, at this stage (M3), we proposed only general MODAs, related to the main types of 
models to be developed in PATROLS. However, the work should be updated near the end of 
the project, when all necessary information is complete. 

4. Performance of the partners 

PATROLS MODA was prepared with collaboration of all PATROLS modelling groups, 
Table 3. Each group was asked to prepare a description of the model according to the 
EMMC templates.  
 

Table 3. Partners delivering MODA 

PARTNER RESPONSIBILITIES 

IOM 
• Delivering MODA for MPPD model 
• Delivering MODA for IVIVE model 
• Delivering MODA for CFD transport model 

UL • Delivering MODA for Quantitative trait-based model 

UNIPI • Delivering MODA for Fluidynamics model 
• Delivering MODA for Allometric scaling model 

RIVM • Delivering MODA for PBPK model 
• Delivering MODA for BMD model 

MISVIK • Delivering MODA for PTGS model 

QSAR LAB 

• Developing templates for PATROLS MODA 
• Delivering MODA for Molecular structure model 
• Delivering MODA for Structure-activity model 
• Delivering MODA for QTTR model 
• Delivering the deliverable D6.7 

 

All Partners fulfilled their tasks in satisfactory time and quality and the Steering Board deems 
this deliverable to be satisfactorily fulfilled. 

5. Conclusions 
 

The applicability of the MODA templates and ontology proposed by EMMC was verified 
and several issues were highlighted to be further discussed in order to make this tool more 
suitable for biology-based, physiology-based and data-based models. 
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During the exercises on MODAs, the following challenges have been faced: 
• The original instructions provided in the templates require additional clarification. 
• The taxonomy proposed by EMMC for physics-based models (i.e.: electronic, 

atomic, mesoscopic, continuous) may be inadequate, when considering models 
developed in PATROLS. 

• The applicability of MODA templates for “data-based models” needs to be 
extended. 

• It would be beneficial to update MODAs at the end of the project to include all 
individual models developed within the project and their mutual connections. 
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APPENDIX_PATROLS	MODA	(760813)	

Summary of the project 
PATROLS main objective is to establish and standardize a battery of innovative, next 
generation physiologically anchored, hazard assessment tools that more accurately predict 
adverse effects caused by long-term, low dose ENM exposure in human and environmental 
systems to support regulatory risk decision making.  

MODA #1 for human toxicity models 
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MODA #2 for ecotoxicity models 
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MODA 
PATROLS: Advanced Tools for NanoSafety Testing 

OVERVIEW of the simulation 

1 USER CASE 
Standardize battery of innovative, next generation physiologically anchored, hazard 
assessment tools that more accurately predict adverse effects caused by long-term, low 
dose ENM exposure in human and environmental systems to support regulatory risk 
decision making.  

2 

 

 

 

CHAIN OF MODELS 

MODA #1 

for human toxicity models 

MODEL 1 
Computational fluid dynamics 
transport model 

MODEL 2 Fluidynamics model 

MODEL 3 Benchmark dose model 

MODEL 4 Physiologically-based 
pharmacokinetic model 

MODEL 5 
Multiple-Path Particle Dosimetry 
Model 

MODEL 6 Molecular structure model 

MODEL 7 Structure-Activity Model 

MODEL 8 Predictive Toxigenomics Space model 

MODEL 9 In vitro – in vivo model 

MODEL 10 Allometric scaling model 

MODA #2 

for ecotoxicity models 

MODEL 6 Molecular structure model 

MODEL 7 Structure-Activity Model 

MODEL 11 Quantitative trait-based model 

MODEL 12 Quantitative toxicity-toxicity model 

3 
PUBLICATION PEER-

REVIEWING THE 
DATA 

 

4 ACCESS 
CONDITIONS  

5 WORKFLOW AND 
ITS RATIONALE 

There are two MODAs developed.  

MODA 1 refers to human dose-response models and contains ten models. There are: (i) 
models based on in vitro in isolation data, (ii) models based on in vivo data, and (iii) 
models that scaling dose-responses for human. The output of these models will be, then 
applied to predict adverse effect cause by realistic doses of ENM for human. 

MODA 2 contains four models that predict environmental toxicity of nanomaterials based 
on their structures including information about the influence of the organism morphology 
on the measured effects. 
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MODEL 1: Computational fluid dynamics transport model 

1 ASPECT OF THE USER CASE/SYSTEM TO BE SIMULATED  

1.1 

ASPECT OF THE 
USER CASE TO BE 

SIMULATED 

 

 Here we present the use of the three-dimensional computational fluid 
dynamics (CFD) transport model to estimate delivered dose metrics for 
industry-relevant Engineered Nanomaterials Materials (ENM) suspended in 
culture media.  The model allows simultaneous modelling of full size 
distributions for polydisperse ENM suspensions 
and provides deposition metrics as well as concentration metrics over the 
extent of the well. The model also emulates the biokinetics at the particle-cell 
interface and allows modelling of ENM dissolution over time.  

1.2 MATERIAL Not applicable 

1.3 GEOMETRY 

 
The model provides practical and robust tools for obtaining accurate dose 
metrics and concentration profiles across the well, for high-throughput 
screening of ENMs. Accurate nano-dosimetry simulation requires: 1) 
standardized dispersion preparation protocols, 2) detailed colloidal suspension 
characterization including size and effective density of formed agglomerates, 
and 3) computational modelling of transport based on agglomerate, media and 
system properties. Standardized dispersion protocol to maximize stability of 
agglomeration state includes sonication of nanomaterial in deionized water to 
particle-specific critical dispersion sonication energy (DSEcr), followed by 
dilution into final application media. Dispersions are analysed by DLS to 
determine agglomerate hydrodynamic diameters, and by VCM to determine 
agglomerate effective density. Transport modelling to determine dose metrics 
requires dH from DLS and ρEV from VCM, as well as media properties 
(viscosity, ηm and density, ρm) and system parameters (temperature, Τ and 
media column height, h). Available computational transport models include 
VCM-ISDD, computational fluid dynamics (CFD).  
Possible output dose metrics include exposure concentrations in the cell 
microenvironment at the bottom of the well (including mass, surface area and 
particle number), fractional or absolute deposition (in terms of mass, surface 
area and particle number), as well as concentration as a function of vertical 
position within the well (concentration profile). 

 

Taken from DeLoid et al (2015). Advanced computational modelling for in vitro 
nanomaterial dosimetry. Particle and Fibre Toxicology. 12:32 
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1.4 TIME LAPSE Duration of simulation is the same as in vitro experiments (e.g. 24hr or 48hr). 

1.5 

MANUFACTURING 
PROCESS OR IN-

SERVICE 
CONDITIONS 

The model will simulate the time course of the transport of the ENM in an in 
vitro well.  It will estimate the ENM dose reaching the cells (at the bottom of the 
well). 

1.6 PUBLICATION ON 
THIS DATA 

Thomas et al (2018). ISD3: a particokinetic model for predicting the combined 
effects of particle sedimentation, diffusion and dissolution on cellular dosimetry 
for in vitro systems. Particle and Fibre Toxicology 15:6 

 

 GENERIC PHYSICS OF THE MODEL EQUATION  

2.0 MODEL TYPE 
AND NAME 

Differential Equations and Partial Differential Equations 

2.1 MODEL 
ENTITY 

The entity in this materials model is finite volumes  

2.2 

MODEL 
PHYSICS/ 

CHEMISTRY 
EQUATION  

PE 

Equation  The model is described by: 

 

Where the 2 first terms on the right-hand side represents diffusion 
and sedimentation processes while the last 2 terms describe 
dissolution. 

N is the number of particles per unit area; 

Dp is the particle diameter; 

x is the position of the particles in the liquid column 

t is the time since the particles are first introduced to the in vitro 
system. 

Ddiff is the diffusion term 

 

Vt is the sedimentation term 

 

g is the gravitational constant  
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Physical  
quantities  

  

ρp and ρf  are the density of the particles and the liquid media 
respectively. 

Other physical quantities required to solve the model  are: 

 

 

2.3 

MATERIALS 
RELATIONS 

 

Relation Not applicable 

Physical 
quantities/ 

descriptors 
for each  MR 

Not applicable. 

2.4 

PHYSICS 
FORMULATION 

OF THE 
CONDITIONS 

Not applicable 

2.5 SIMULATED 
INPUT 

 Not applicable 
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3 SOLVER AND COMPUTATIONAL TRANSLATION OF THE SPECIFICATIONS  

3.1 NUMERICAL 
SOLVER 

PDE numerical solver 

3.2 SOFTWARE TOOL MATLAB 

3.3 TIME STEP 

Most solvers will feature an adaptive step algorithm in which the time step is 
automatically optimized based on the scenario. 

 

3.4 

COMPUTATIONAL 
REPRESENTATION  

 

PHYSICS 
EQUATION, 
MATERIAL 

RELATIONS, 
MATERIAL 

Not applicable 

3.5 
COMPUTATIONAL 

BOUNDARY 
CONDITIONS  

Surface area of the in vitro system 

Height of in vitro system 

3.6 
ADDITIONAL 

SOLVER 
PARAMETERS 

More equations will be included to describe the dissolution process in more 
details. 

 
 

4 POST PROCESSING 

4.1 THE PROCESSED 
OUTPUT  

The dose of particles reaching the bottom of the in vitro system can be converted 
into different units (such as mass, surface area, etc…) 

4.2 
METHODOLOGIES Dose conversions may be based on geometrical calculations (e.g. converting the 

mass of a sphere into its surface area based on information on its density and 
diameter) or using measured material information (e.g. surface area per unit mass). 

4.3 MARGIN OF 
ERROR 

This will depend on the nature of the nanoparticles and will be assessed when the 
theoretical prediction is compared to experimental results. 
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MODEL 2: Fluidynamics model 

1 ASPECT OF THE USER CASE/SYSTEM TO BE SIMULATED  

1.1 

ASPECT OF THE 
USER CASE TO BE 

SIMULATED 

 

The models are used to describe the physical transport of momentum, 
biomolecules and nanomaterials in a micro-fluidic or milli-fluidic in-vitro system 
used for culturing cells.   

The results are in the form of wall shear stress values, oxygen concentrations 
and fluxes, glucose concentrations and fluxes and nanomaterial exposure 
(nanoparticle flux). It may also be possible to quantify nanomaterial exposure per 
cell in 3D spheroids. 

1.2 MATERIAL 

The domain material is water at 37°. Its viscosity and density are tabulated. 
Oxygen concentration is obtained from Henry’s law. Cell parameters such as 
oxygen consumption rate (OCR) and Michaeles Menten constants are from the 
literature. Nanomaterial physical constants will be from producers.  Should the 
material used to fabricate in-vitro devices be oxygen permeable (e.g. PDMS), this 
factor will also be considered.  

1.3 GEOMETRY 

This box shows the logical workflow, starting from the geometry of the device to 
calculation of nanomaterial exposure, shear stress, molecular fluxes. C is 
concentration of the species in question, V is fluid velocity, ρcell is cell density, 
ρecm is the density of extracellular matrix or mucus. D is the species diffusion 
constant in water and d is the thickness of the membrane. 

 

1.4 TIME LAPSE The studies will be conducted in stationary conditions. 

1.5 

MANUFACTURING 
PROCESS OR IN-

SERVICE 
CONDITIONS 

Conditions to be simulated are: atmospheric dissolved oxygen, media glucose 
concentration, oxygen and glucose diffusion constants, cell oxygen and glucose 
consumption rates 

Initial media glucose, mM CGin 5 mM  

Glucose diffusion constant in water, 37°C DG 6.7× 10−12 m2/s 

Initial oxygen concentration in culture 
medium mM 

𝑐𝑂2,𝑖𝑛 0.21 mM 

Oxygen diffusion in aqueous media  𝐷𝑂2 3 × 10−9 m2/s 

Cellular maximum oxygen, glucose 
consumption rate  

OCR, 
GCR 

4.8 × 10−17 , 8 × 
10−18 moles/(cell.s) 

Michaelis-Menten constant for oxygen, 
glucose consumption, mM  

Kmo , 
KmG 

7.39 × 10−3 , 6× 
10−2  mM 

Other conditions to be obtained from experimenters are: inlet flow rate as initial 
input, cell density, membrane thickness, permeability and porosity. Spheroid 
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diameter and cell density in spheroid, nanomaterial uptake rate, nanomaterial 
hydrodynamic radius. Device material characteristics (oxygen permeability and 
wall thickness). 

1.6 PUBLICATION ON 
THIS DATA 

[1] Mattei G, Giusti S, Ahluwalia A. Design Criteria for Generating Physiologically 
Relevant In Vitro Models in Bioreactors. Processes; 2014;2: 548–569.   

[2] Ferroni M, Giusti S, Nascimento D, Silva A, Boschetti F, Ahluwalia A. 
Modeling the fluid-dynamics and oxygen consumption in a porous scaffold 
stimulated by cyclic squeeze pressure. Med Eng Phys. 2016;38.   

[3] Giusti S, Sbrana T, La Marca M, Di Patria V, Martinucci V, Tirella A, et al. A 
novel dual-flow bioreactor simulates increased fluorescein permeability in 
epithelial tissue barriers. Biotechnol J. 2014;9: 1175–84.   

 

2 GENERIC PHYSICS OF THE MODEL EQUATION  

2.0 MODEL TYPE 
AND NAME 

Continuum model 

2.1 MODEL 
ENTITY 

Finite volumes 

2.2 

MODEL 
PHYSICS/ 

CHEMISTRY 
EQUATION  

PE 

Equation Navier stokes (1), continuity (2), dilute species transport (3), 
Michaeles Menten consumption (4), and their coupling.  

 −η∇2𝒖+ρ(𝒖·∇)𝒖+∇𝑝 =𝐅 (1) 
∇·𝒖=0 (2) 
∇·(−𝐷∇𝑐)=𝑅−𝒖·∇𝑐 (3) 
𝑅=OCR·𝑐/(𝐾𝑚+𝑐) (4) 

Physical  
quantities  

η is fluid viscosity, u is the velocity vector, 𝜌 is fluid density, p is 
pressure and F is body force. D is the diffusion constant of the 
species of interest, c is its concentration and R its cellular volumetric 
consumption rate, which depends on maximal consumption rate 
(OCR) and Michaeles Menten constant (Km). 

Fluid constants are tabulated as a function of temperature (37°C) 
and available in the software. Input velocity is from experimenters 
and the other data are from reference [1].      

2.3 

MATERIALS 
RELATIONS 

 

Relation If used, the following relation will be considered to determine the 
inward oxygen flux through the walls of in-vitro devices. 

⎛ ⎞
⎜ ⎟
⎝ ⎠

O2m
O2 O2

cPJ = p -
L H

 

Physical 
quantities/ 

descriptors 
for each  MR 

JO2 is the inward flux, Pm is material permeability which is tabulated 
for PDMS. L is the wall thickness, pO2 is oxygen partial pressure in 
ai, co2 is the oxygen concentration in the device close to the wall 
(calculated from 2.2) and H is Henry’s constant for oxygen in water 
at 37°C. 

2.4 
PHYSICS 

FORMULATION 
OF THE 

Not applicable 
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CONDITIONS 

2.5 SIMULATED 
INPUT 

Run in isolation 

 
 

3 SOLVER AND COMPUTATIONAL TRANSLATION OF THE SPECIFICATIONS  

3.1 NUMERICAL 
SOLVER 

Euler-Lagrange for particle tracking. COMSOL’s UMFPACK direct solver for 
momentum and mass transport. 

3.2 SOFTWARE TOOL COMOSL Multiphysics and ANSYS Fluent 

3.3 TIME STEP Most solvers will feature an adaptive step algorithm in which the time step is 
automatically optimized based on the scenario. 

3.4 

COMPUTATIONAL 
REPRESENTATION  

 

PHYSICS 
EQUATION, 
MATERIAL 

RELATIONS, 
MATERIAL 

Not applicable. 

3.5 
COMPUTATIONAL 

BOUNDARY 
CONDITIONS  

 

Model Surface Boundary Condition 

Oxygen 
convection and 

diffusion 

System side walls Insulation/symmetry 

Interface between the hydrogel 
construct and the fluid sub-

domain 
Continuity 

Fluid domain inlet Constant oxygen 
concentration 

Fluid domain outlet Convective flux 

Navier-Stokes 

Solid-liquid interfaces No slip (µ = 0) 

Fluid domain inlet Normal inflow velocity 
(vin) 

Fluid domain outlet Pressure, no viscous 
stress (p0 = 0) 

3.6 
ADDITIONAL 

SOLVER 
PARAMETERS 

Cannot be specified in this stage as the model is yet to be implemented 
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4 POST PROCESSING 

4.1 
THE PROCESSED 

OUTPUT  
The output will be generated as oxygen and glucose flux and concentration 
gradient, surface shear stress, velocity vectors, Reynolds number, nanomaterial 
flux. 

4.2 METHODOLOGIES Post processing will involve surface or volume integration over surfaces or 
domains of interest. 

4.3 
MARGIN OF 

ERROR 
In the models the accuracy depends on the accuracy of input parameters and 
physical data. Besides these, errors are usually of the order of 10%. This is much 
lower than the stochastic variability in cell cultures. 

 
 

MODEL 3: Benchmark dose model 

1 USER CASE  

1.1 

ASPECT OF THE 
USER CASE TO BE 

CALCULATED 

 

PROAST is a benchmark dose (BMD) estimation model. It uses statistical 
methods to analyse toxicological dose-response data and to estimate the dose 
(the benchmark dose) that induces a certain, predefined response (the benchmark 
response, BMR). Typically, a benchmark dose will be used as a ‘reference point’ 
or ‘point of departure’ for a risk assessment. In PATROLS, PROAST will be used 
to derive dose-response relationships for nano material exposure in different in 
vitro systems. These dose-response relations will be used to predict responses in 
vivo (in experimental models such as rat). Subsequent whole animal BMD 
analysis in PROAST will be used to evaluate the predicted dose-response in vivo.  

1.2 MATERIAL 

PROAST will be used to estimate dose response relationships for nano materials 
in the experimental animal model. It is expected that this will be mostly rat, but if 
dose-response data become available for other species (e.g. mouse), these may 
be analyzed as well. PROAST is a statistical model and does not consider any 
physiological aspects of the experimental species or physical properties of the 
nano material used. 

1.3 STRUCTURE PROAST is a statistical model and does not consider any physiological aspects of 
the experimental species or physical properties of the nano material used. 

1.4 TIME LAPSE 
Time is usually not considered explicitly in dose-response modelling. If suitable, 
information on the time duration of the exposure experiment can be included in the 
analysis as a covariate. 

1.5 

MANUFACTURING 
PROCESS OR IN-

SERVICE 
CONDITIONS 

Not applicable. 

1.6 

PUBLICATION ON 
THIS ONE 

DATAMINING 
OPERATION 

EFSA Scientific Committee, 2017. Update: Guidance on the use of the benchmark 
dose approach in risk assessment. EFSA Journal 2017;15(1):4658 
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2 THE DATA-BASED MODEL 

2.1 MODEL NAME/TYPE Model name/type 

2.2 DATABASE AND 
TYPE 

INPUTS 

PROAST takes dose-response data as input. Data are 
presented as sets of (dose, response) tuples. Typically data 
are provided as text files, and are manually generated. 
Response data may be continuous or quantal, depending on 
the toxicological end point studied. 

OUTPUTS 

For the purpose of PATROLS, output of PROAST will be a 
dose-response relationship that provides an optimal 
description of the experimental dose-response data. This may 
be a in the form of a single parameterized model or in a non-
parametric, table format generated by model averaging over a 
set of optimized dose-response models. 

2.3 EQUATION(S) 

HYPOTHESIS PROAST is used for finding an optimal dose-response model, 
not for hypothesis testing. 

PHYSICAL 
QUANTITIES 

PROAST uses a set of parametric statistical models. These 
models are non-mechanistic, however the model parameters 
for continuous responses can be given a physiological 
interpretation. 

 

Parameter Interpretation 

a Response at zero dose 

b Measure of the potency of the nano material 

c Maximum fold change in the response 
relative to the background 

d Steepness of the dose-response on log 
scale 
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3 COMPUTATIONAL DETAIL OF DATAMINING OPERATION 

3.1 NUMERICAL 
SOLVER 

PROAST uses numerical methods to optimize the log-likelihood of the model 
given the data. 

3.2 SOFTWARE TOOL PROAST is available as a web tool at proastweb.rivm.nl or as an R package. 

3.6 MARGIN OF ERROR 

PROAST determines the optimal model fit for a set of parametric models. When 
estimating a benchmark dose, the confidence interval in the BMD is determined, 
preferably using model averaging. Although this method accounts for model 
uncertainty, a separate validation is generally not conducted. In principle, model 
validation could be conducted by dividing the data set in training and validation 
sets and verifying the model fit against the validation data. 

MODEL 4: Physiologically-based pharmacokinetic model 

1 ASPECT OF THE USER CASE/SYSTEM TO BE SIMULATED  

1.1 

ASPECT OF THE 
USER CASE TO BE 

SIMULATED 

 

The pbpk model is used to simulate distribution in and elimination from the body of 
the rat of inhaled or ingested nano materials. As input the model requires an 
external exposure pattern, specifying the dosing amount and time pattern of nano 
material deposited in the alveolar lung region or ingested after oral administration. 

The result is the (time dependent) concentration of nano material in different 
organs, in particular the liver. 

The pbpk model will be calibrated for different nano materials (characterized by 
both physical chemical composition and particle geometry) by optimization its 
description of experimental distribution data. The physiology parameters for rat will 
be set to reference values from literature and will depend on the animal strain for 
which distribution information is available. 

1.2 MATERIAL Not applicable 
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1.3 GEOMETRY 

In the pbpk model the rat is represented by a multi-compartment system, each 
compartment representing different organs or tissues into which the material may 
transfer. The size and complexity of the model (i.e. number of compartments) may 
vary with the detail of available distribution data and material properties. 

 

Taken from (Sweeney, L. M., L. MacCalman, L. T. Haber, E. D. Kuempel and C. L. 
Tran (2015). "Bayesian evaluation of a physiologically-based pharmacokinetic 
(PBPK) model of long-term kinetics of metal nanoparticles in rats." Regulatory 
Toxicology and Pharmacology 73(1): 151-163.) 

1.4 TIME LAPSE The simulation will target long-term internal exposures, i.e. exposures on the 
timescale of several weeks to years. 

1.5 

MANUFACTURING 
PROCESS OR IN-

SERVICE 
CONDITIONS 

The model will simulate long-term internal organ concentrations (lung and liver) of 
the nano material after daily repeated exposure, or exposure during a limited 
period (e.g. single dose or a limited number of days of exposure). 

1.6 PUBLICATION ON 
THIS DATA 

The model is to be implemented and calibrated for nano materials selected in 
PATROLS. The model will be based on (adapted from) descriptions published in 
(among others) : 

Li, D., M. Morishita, J. G. Wagner, M. Fatouraie, M. Wooldridge, W. E. Eagle, J. 
Barres, U. Carlander, C. Emond and O. Jolliet (2016). "In vivo biodistribution and 
physiologically based pharmacokinetic modeling of inhaled fresh and aged cerium 
oxide nanoparticles in rats." Particle and Fibre Toxicology 13(1): 45. 

Sweeney, L. M., L. MacCalman, L. T. Haber, E. D. Kuempel and C. L. Tran (2015). 
"Bayesian evaluation of a physiologically-based pharmacokinetic (PBPK) model of 
long-term kinetics of metal nanoparticles in rats." Regulatory Toxicology and 
Pharmacology 73(1): 151-163. 
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2 GENERIC PHYSICS OF THE MODEL EQUATION  

2.0 MODEL TYPE 
AND NAME 

Continuum Model, Physiologically-based pharmaco-Kinetic (pbpk) model 

2.1 MODEL 
ENTITY 

finite volumes 

2.2 

MODEL 
PHYSICS/ 

CHEMISTRY 
EQUATION  

PE 

Equation The model solves the matrix differential equation  

𝑑𝐶
𝑑𝑡

= 𝐴𝐶 

for the vector of compartment concentrations 𝐶 and the system matrix 
A. 

Physical  
quantities  

𝐶 is the concentrations vector. It represents the concentrations 
(mg/cm3) of nano material Ci {i ͼ (1, N)} in each of the N different 
physiological compartments. 

A is the system matrix and consists of a representation of the mass 
balance equations between the N compartments of the system. 

The mass balance will in general depend on physiological parameters 
that describe the system (rat) and physical chemical parameters that 
describe the material. The general form of the mass balance equations 
for compartment i is:  

𝑉!
𝑑𝐶!
𝑑𝑡

= 𝜃!𝑄! 𝐶! −
𝐶!
𝑃

− 𝑘!,!"𝐶! −𝑀!,!"#𝑘!,!" − 𝑉!𝑘!,!"𝐶! 

Where  

 

𝑉! (distributional) volume of tissue (compartment) i 

𝜃! measure of the transfer between capillary blood and 
tissue I (accounting for e.g. permeability) 

𝑄! blood flow in tissue i 

𝐶! concentration in (arterial) blood 

P partition coefficient nano material between blood and 
tissue 

𝑘!,!" rate at which nano material is sequestered (e.g. taken 
up by phagocytizing cells) 

𝑀!,!"# amount of nano material sequestered in tissue i 

𝑘!,!" rate at which sequestered material is desorbed in 
tissue i 
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𝑘!,!" elimination rate of nano material from tissue i 
 

2.3 

MATERIALS 
RELATIONS 

 

Relation Not applicable 

Physical 
quantities/ 

descriptors 
for each MR 

Not applicable 

2.4 

PHYSICS 
FORMULATIO

N OF THE 
CONDITIONS 

Not applicable 

2.5 SIMULATED 
INPUT 

Run in isolation 

 
 

3 SOLVER AND COMPUTATIONAL TRANSLATION OF THE SPECIFICATIONS  

3.1 NUMERICAL 
SOLVER 

The model has not been implemented and a choice for the solver is yet to be 
made. The system is a linear system of ordinary differential equations. A likely 
choice for a solver might be a member of the ‘Runge Kutta’ familly of solvers. But 
the use of implicit numerical methods such as the implicit Adams method or the 
Rosenbrock method may be considered. 

3.2 SOFTWARE TOOL 
A decision on the software tool to implement the model is yet to be made. Options 
are Matlab and R. Possibly the model itself may be implemented in C or C++ to 
enhance performance. 

3.3 TIME STEP Most ode solvers will feature an adaptive step algorithm in which the time step is 
automatically optimized based on the scenario. 

3.4 

COMPUTATIONAL 
REPRESENTATION  

 

PHYSICS 
EQUATION, 
MATERIAL 

RELATIONS, 
MATERIAL 

Not applicable 

3.5 
COMPUTATIONAL 
BOUNDARY 
CONDITIONS  

Not applicable 

3.6 
ADDITIONAL 

SOLVER 
PARAMETERS 

Cannot be specified in this stage as the model is yet to be implemented 
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4 POST PROCESSING 

4.1 

THE PROCESSED 
OUTPUT  

Output will be generated as time dependent concentrations in different target 
organs (lung and liver in particular). Doses on mass base may be converted to 
other dose measures such as total surface area, total volume of material, number 
of particles in post-processing. 

4.2 
METHODOLOGIES Dose conversions may be based on geometrical calculations (e.g. converting the 

mass of a sphere into its surface area based on information on its density and 
diameter) or using measured material information (e.g. surface area per unit mass). 

4.3 

MARGIN OF 
ERROR 

Uncertainty in model parameters will be assessed in the model optimization 
procedure. The uncertainty in model parameters may then be extrapolated to a 
probability distribution of the estimated dose levels at the target organ or may be 
used to establish confidence intervals. 
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MODEL 5: MPPD model 

1 ASPECT OF THE USER CASE/SYSTEM TO BE SIMULATED  

1.1 

ASPECT OF THE 
USER CASE TO BE 

SIMULATED 

 

The Multiple-Path Particle Dosimetry Model (MPPD v 3.04) model is a 
computational model, used for estimating human and rat airway particle 
dosimetry. 

The MPPD model calculates the deposition and clearance of monodisperse 
and polydisperse aerosols in the respiratory tracts of rats and human adults 
and children (deposition only) for particles ranging in size from ultrafine (0.01 
µm) to coarse (20 µm). The models are based on single-path and multiple-path 
methods for tracking air flow and calculating aerosol deposition in the lung. 
The single-path method calculates deposition in a typical path per airway 
generation, while the multiple-path method calculates particle deposition in all 
airways of the lung and provides lobar-specific and airway-specific information. 
Within each airway, deposition is calculated using theoretically derived 
efficiencies for deposition by diffusion, sedimentation, and impaction within the 
airway or airway bifurcation. Filtration of aerosols by the nose and mouth is 
determined using empirical efficiency functions. The MPPD model includes 
calculations of particle clearance in the lung following deposition. 

1.2 MATERIAL 

• Monodisperse and polydisperse aerosols of (nano)-particles ranging in 
diameter from 0.01 to 20 µm. Descriptors for the particulate include, size, size 
distribution, density, mass median aerodynamics diameter, etc. 

1.3 GEOMETRY 

• Human (single-path symmetric, 5-lobe symmetric, and asymmetric 
stochastic) and rat (asymmetric) lung geometries included 

• Human adult and children lung geometries representing 10 distinct ages 
from 3 months old to 21 years old 

• Models upper respiratory tract deposition (nasal, oral, oronasal, or 
endotracheal breathing) 

• Models lobar, tracheobronchial, and alveolar lung airway deposition and 
clearance 

• Accounts for individual breathing parameters such as breath frequency, 
tidal volume, inspiratory and expiratory fractions, functional residual 
capacity, and upper respiratory tract volume 

 

 
Theoretical model of the human airway up until the seventh generation 
used to calculate computational fluid dynamics (CFD).  

1.4 TIME LAPSE Variable exposure scenarios and activity patterns over any length of time 
(acute or chronic). 
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1.5 

MANUFACTURING 
PROCESS OR IN-

SERVICE 
CONDITIONS 

The MDDP model calculates the deposition fraction for an inhaled dose of 
nanoparticles in the different regions of the rat/human lungs. 

1.6 PUBLICATION ON 
THIS DATA 

Anjilvel, S. and Asgharian, B. (1995). A multiple-path model of particle 
deposition in the rat lung. Fundam. Appl. Toxicol. 28, 41-50. 

National Institute for Public Health and the Environment (RIVM) (2002). 
Multiple Path Particle Dosimetry Model (MPPD v 1.0): A Model for Human and 
Rat Airway Particle Dosimetry. Bilthoven, The Netherlands. RIVA Report 
650010030. 

 
2 GENERIC PHYSICS OF THE MODEL EQUATION  

2.0 MODEL TYPE 
AND NAME 

Computational Fluid Dynamics (CFD). 

2.1 MODEL 
ENTITY 

Finite volumes 

2.2 

MODEL 
PHYSICS/ 

CHEMISTRY 
EQUATION  

PE 

Equation Trajectories of aerosol particles under the simultaneous action of 
inertial impaction, gravitational settling, Brownian motion and 
interception are simulated by solving the particles' equations of 
motion - the three-dimensional Navier-Stokes equation - using 
Monte Carlo techniques. 

Physical  
quantities  

Gravitational constant, g. 

Particle aerosol concentration, density, size, size distribution and 
mass median aerodynamics diameter      

2.3 

MATERIALS 
RELATIONS 

 

Relation N/A 

Physical 
quantities/ 

descriptors 
for each  MR 

N/A 

2.4 

PHYSICS 
FORMULATION 

OF THE 
CONDITIONS 

N/A 

2.5 SIMULATED 
INPUT 

 N/A 
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3 SOLVER AND COMPUTATIONAL TRANSLATION OF THE SPECIFICATIONS  

3.1 NUMERICAL 
SOLVER 

Finite difference, Monte Carlo techniques 

3.2 SOFTWARE TOOL C++ 

3.3 TIME STEP Most solvers will feature an adaptive step algorithm in which the time step is 
automatically optimized based on the scenario. 

3.4 

COMPUTATIONAL 
REPRESENTATION  

 

PHYSICS 
EQUATION, 
MATERIAL 

RELATIONS, 
MATERIAL 

N/A 

3.5 
COMPUTATIONAL 

BOUNDARY 
CONDITIONS  

Lung geometry for rats and humans 

3.6 
ADDITIONAL 

SOLVER 
PARAMETERS 

N/A 

 

4 POST PROCESSING 

4.1 THE PROCESSED 
OUTPUT  

Output will be generated as deposition fraction of the inhaled dose in different 
parts of the human/rat lungs 

4.2 METHODOLOGIES N/A 

4.3 MARGIN OF ERROR N/A 
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MODEL 6: Molecular models of the structure 

1 ASPECT OF THE USER CASE/SYSTEM TO BE SIMULATED  

1.1 
ASPECT OF THE 

USER CASE TO BE 
SIMULATED 

Molecular models of the structure of nanoparticles are simulated. Nano-
descriptors expressing the complexity of nano-structures as well as their 
physicochemical properties are obtained. 

1.2 MATERIAL Molecular models of the nanoparticles are based on crystallographic data, as 
well as information about morphology, size, volume, and surface. 

1.3 GEOMETRY the complete crystal structure or representative cluster built from the bulk 
crystal structure 

1.4 TIME LAPSE  

1.5 

MANUFACTURING 
PROCESS OR IN-

SERVICE 
CONDITIONS 

 

1.6 PUBLICATION ON 
THIS DATA 

T. Puzyn, N. Jeliazkova, H. Sarimveis, et al., Perspectives from the 
NanoSafety Modelling Cluster on the validation criteria for (Q)SAR models 
used in nanotechnology, Food and Chemical Toxicology, 2018, 112, 478-494. 
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2 GENERIC PHYSICS OF THE MODEL EQUATION  

2.0 MODEL TYPE 
AND NAME 

Structural model 

2.1 MODEL 
ENTITY 

N.A. 

2.2 

MODEL 
PHYSICS/ 

CHEMISTRY 
EQUATION  

PE 

Equation N.A. 

Physical  
quantities  

N.A. 

2.3 

MATERIALS 
RELATIONS 

 

Relation N.A. 

Physical 
quantities/ 

descriptors 
for each  MR 

N.A. 

2.4 

PHYSICS 
FORMULATION 

OF THE 
CONDITIONS 

N.A. 

2.5 SIMULATED 
INPUT 

Molecular model of the nanoparticles 

 
3 SOLVER AND COMPUTATIONAL TRANSLATION OF THE SPECIFICATIONS  

3.1 NUMERICAL 
SOLVER 

N.A. 

3.2 SOFTWARE TOOL Gaussian, VASP 

3.3 TIME STEP N.A. 

3.4 

COMPUTATIONAL 
REPRESENTATION  

 

PHYSICS 
EQUATION, 
MATERIAL 

RELATIONS, 
MATERIAL 

N.A. 

3.5 
COMPUTATIONAL 

BOUNDARY 
CONDITIONS  

N.A. 

3.6 
ADDITIONAL 

SOLVER 
PARAMETERS 

N.A. 
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4 POST PROCESSING 

4.1 
THE PROCESSED 

OUTPUT  
Nano-descriptors expressing the complexity of nano-structures as well as their 
physicochemical properties will be developed. This will include for example: surface 
chemistry, surface charge, particle size and shape. 

4.2 METHODOLOGIES N.A. 

4.3 MARGIN OF 
ERROR N.A. 
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MODEL 7: Structure-Activity model 

1 USER CASE  

1.1 
ASPECT OF THE 

USER CASE TO BE 
CALCULATED 

To define the qualitative (SAR) or quantitative (QSAR) relations between high-
quality experimental data related to biological activity and the structural and/or 
physicochemical characteristics of nanomaterials.  

Model will be utilized: i) to predict accurately the activity (dose), and ii) to assist in 
the identification of possible mechanisms of toxicity induced by nanomaterials at 
different levels of biological organisation. 

1.2 MATERIAL Nanomaterials studies within finished and/or on-going projects (e.g. NanoREG2, 
SUN, NANOIMUNE, etc.) related to nanosafety. 

1.3 STRUCTURE 
Appropriate types of nano-descriptors expressing the complexity of nano-
structures as well as their physicochemical properties will be developed. This will 
include for example: surface chemistry, surface charge, particle size and shape. 

1.4 TIME LAPSE Not applicable 

1.5 

MANUFACTURING 
PROCESS OR IN-

SERVICE 
CONDITIONS 

The changes of the structures and, in consequence the properties of 
nanomaterials in the external conditions will be investigated. The appropriate 
system-depended descriptors will be provided.  

1.6 

PUBLICATION ON 
THIS ONE 

DATAMINING 
OPERATION 

All developed models will be published.   

The application of existing formats and repositories (e.g. QMRF, QsarDB) for 
documenting QSAR models will be analysed in order to ensure reproducibility of 
the developed models (including easy transfer and exchange across different 
platform).  
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2 THE DATA-BASED MODEL 

2.1 MODEL NAME/TYPE 

Nano - (Quantitative) Structure – Activity Relationships (Nano(Q)SAR, n(Q)SAR) 
– developed by applying the statistical or machine learning algorithm to a training 
set containing a matrix of descriptors with associated endpoint values. 

Alternatively, the terms (Quantitative) Nanostructure – Activity Relationships 
((Q)NAR) and (Quantitative) Nanostructure – Toxicity Relationships ((Q)NTR) are 
also used in the literature.  

2.2 DATABASE AND 
TYPE 

INPUTS 

Endpoint (y) experimentally measured values of cytotoxicity, 
genotoxicity and ecotoxicity gathered from available 
databases, if necessary logarithmically transformed. 
Quantitative as well as qualitative data will be investigated.  

Matrix of descriptors (X) calculated (e.g. electron affinity, 
surface charge) and/or experimentally measured (e.g. zeta 
potential), if necessary, logarithmically transformed and/or 
normalized 

OUTPUTS 
Predicted values of cytotoxicity, genotoxicity and ecotoxicicty 
and novel knowledge related to mechanism of toxicity of 
nanomaterials 

2.3 EQUATION(S) 

HYPOTHESIS Nano(Q)SARs are based on the assumption that when the 
descriptors are known for a group of nanomaterials, and the 
experimental activity data are available only for a few of them, 
it is possible to predict the unknown activity directly from the 
descriptors and a suitable mathematical model. Model is 
derived from algorithm analysing the available data.  

PHYSICAL 
QUANTITIES 

y = f(X), where: 

y – endpoint, X – descriptors 

 
3 COMPUTATIONAL DETAIL OF DATAMINING OPERATION 

3.1 NUMERICAL 
SOLVER 

To develop the models linear and non-linear chemometric techniques will 
be investigated, for example: multiple linear regressions, partial least squares 
regression and support vector machine. 

3.2 SOFTWARE TOOL 

Software developed in the frame of NanoBRIDGES project (EU FP7) 
(http://nanobridges.eu/software/) as well as other tools available for QSAR models 
development and validation (e.g. QSARINS, http://www.qsar.it/ , Double – Cross 
Validation, https://sites.google.com/site/dtclabdcv/) will be employed.  

3.6 MARGIN OF ERROR 

To assess the predictive ability and quality of Nano(Q)SAR models the 
parameters recommended by OECD will be applied. 
http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?doclanguage=e
n&cote=env/jm/mono(2007)2) 

 
 
 
 
 
 
 



H2020-NMBP-2017 PATROLS Deliverable 6.7 

	
42 of 51  

MODEL 8: Predictive Toxicogenomics Space model 

1 USER CASE  

1.1 

ASPECT OF THE 
USER CASE TO BE 

CALCULATED 

 

Will be assessed during project 

1.2 MATERIAL Any (None specified by the model) 

1.3 STRUCTURE Any (None specified by the model) 

1.4 TIME LAPSE Biological samples treated with nanomaterial 

1.5 

MANUFACTURING 
PROCESS OR IN-

SERVICE 
CONDITIONS 

Any (None specified by the model) 

1.6 

PUBLICATION ON 
THIS ONE 

DATAMINING 
OPERATION 

Bioinformatics analysis according to: Kohonen P, Parkkinen JA, Willighagen EL, 
Ceder R, Wennerberg K, Kaski S,Grafström RC. A transcriptomics data-driven 
gene space accurately predicts liver cytopathology and drug-induced liver injury. 
Nat Commun. 2017 Jul 3;8:15932. doi:10.1038/ncomms15932. 
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2 THE DATA-BASED MODEL 

2.1 MODEL NAME/TYPE Model name/type: PTGS tool 

2.2 DATABASE AND 
TYPE 

INPUTS 

• Gene expression data on 1331 Predictive Toxicogenomics 
Space (PTGS) genes. Continuous or microarray, counts 
for RNA-seq or tempO-seq data (high-throughput RNA-
seq).  

• Measurements are done preferably on cellular in vitro 
models, or in whole model organisms 

• Pre-processing according to measurement technology 
• Microarray or RNA-seq measurement + PTGS gene sets 

(see article doi:10.1038/ncomms15932 for details) + 
reference values for cytotoxicity and organ injury. 
 

OUTPUTS 

• Cytotoxicity probability estimate (continuous), exceeds 
virtual GI50 dosage (binary), organ (liver) injury probability 
estimate (continuous), exceeds 50% threshold (binary), 
PTGS component activities for mode-of-action 
(continuous) 

• For details on interpretation see article 
doi:10.1038/ncomms15932. 

2.3 EQUATION(S) 

HYPOTHESIS Gene expression data analysed with the PTGS tool (patent 
pending) predicts nanomaterial toxicity and cytotoxicity, 
including mode-of-action, and serves potentially for grouping 

PHYSICAL 
QUANTITIES 

None, completely based on measurement data, external 
reference values are used as decision criteria (see above and 
the reference article for details) 

 
3 COMPUTATIONAL DETAIL OF DATAMINING OPERATION 

3.1 NUMERICAL 
SOLVER 

Gene Set Enrichment Analysis (GSEA), Bayesian linear modelling, R and 
Bioconductor 

3.2 SOFTWARE TOOL 

R and Bioconductor packages according to technology for pre-processing, limma 
(linear models for microarray analysis) for downstream analysis (limma and voom 
for RNA-seq or count data in general), R and tidyverse for data manipulations, R 
and ggplot2 for data visualization 

3.6 MARGIN OF ERROR Model quality is assessed using positive and negative controls. Assessed against 
cytotoxicity or organ toxicity data if available. 
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MODEL 9: IVIVE model 

1 USER CASE  

1.1 

ASPECT OF THE 
USER CASE TO BE 

CALCULATED 

 

In vitro/in vivo extrapolation (IVIVE) is a method to establish the correlation 
between the corresponding in vitro dose-response results with the in vivo 
counterpart. 

1.2 MATERIAL 
In vitro and in vivo dose-response data from FP7 projects (ENPRA, MARINA, 
SUN), H2020 project (NanoREG2, CaliBRATE) and data generated from 
PATROLS. 

1.3 STRUCTURE 

The dose-response in vitro will be described using the descriptors identified by 
QSAR modelling plus the estimation of the real dose (available to cells) from 
HARVARD model. 

The dose-response in vivo will be described using the MDDP model for inhalation 
exposure. For other routes of exposure (e.g. ingestion), the dose-response will 
have to assessed by statistical data analysis (non-linear regression). 

1.4 TIME LAPSE 
Time is not considered explicitly in dose-response modelling. If suitable, 
information on the time duration of the exposure experiment can be included in the 
analysis as a covariate. 

1.5 

MANUFACTURING 
PROCESS OR IN-

SERVICE 
CONDITIONS 

Not Applicable 

1.6 

PUBLICATION ON 
THIS ONE 

DATAMINING 
OPERATION 

No publications so far.  
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2 THE DATA-BASED MODEL 

2.1 MODEL NAME/TYPE Model name/type 

2.2 DATABASE AND 
TYPE 

INPUTS 

• Nanoparticle physico-chemical characteristics. 
• Cell density (number of cell per cm2 of affected 

region in vitro and in vivo). 
• Dose-Response data (corresponding in vitro and in 

vivo data) 

OUTPUTS • Correlation between in vitro and in vivo dose 
response data. 

2.3 EQUATION(S) 

HYPOTHESIS The hypothesis is that for equivalent dose (described with the 
relevant receptors) the vitro and in vivo systems yield 
equivalent results. 

The assumption is that if the in vitro system is realistic enough 
then the hypothesis above will hold. 

PHYSICAL 
QUANTITIES 

• Nanoparticle physico-chemical characteristics. 
• Cell density (number of cell per cm2 of affected 

region in vitro and in vivo). 
• Dose-Response data (corresponding in vitro and in 

vivo data) 

 
3 COMPUTATIONAL DETAIL OF DATAMINING OPERATION 

3.1 NUMERICAL 
SOLVER 

Multiple and non-linear regression 

3.2 SOFTWARE TOOL MATLAB 

3.6 
MARGIN OF 

ERROR 

The margin of error is dependent on the variation of the data.  This method 
accounts for data uncertainty.  In principle, the validation could be conducted by 
dividing the data set into one for  training and one for validation to assess the 
accuracy of the in vitro to in vivo extrapolation. 
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MODEL 10: Allometric scaling model 

1 ASPECT OF THE USER CASE/SYSTEM TO BE SIMULATED  

1.1 

ASPECT OF THE 
USER CASE TO BE 

SIMULATED 

 

Allometric scaling models are used to i) determine physiological parameters in 
downscaled in-vitro systems, ii) extrapolate and upscale in-vitro results to the 
mass of an adult human.  

1.2 MATERIAL 

The basic unit of allometry is body mass and the basic material is water.  All 
physiological parameters (Y) are correlated with body mass (M) through the 
so-called allometric relationship. The constant a is a proportionality factor for 
the particular parameter, whereas b is the allometric exponent. b varies in 
magnitude and sign and has a specific value for each parameter according to 
how it scales with mass. 

 

Perhaps the best-known relationship Kleiber’s law, which correlates the 
metabolic rate (MR), the rate at which an organism burns energy, with 
organism mass.   

  

It is reasonable to assume that in order for a down-scaled in-vitro system to 
manifest physiologically relevant behaviour, it should obey physiological 
allometric correlations. This is particularly relevant for metabolic rates, since 
Kleiber’s law holds for 8 orders of magnitude of mass (from 1g shrew to 150 
tonne blue whale) [1] 

1.3 GEOMETRY The mass of an in-vitro system is given by the overall volume of the cellular 
construct. In the case of a fluidic system the media volume is also relevant.  

1.4 TIME LAPSE Not applicable. However, time also scales with mass and this will be taken into 
consideration. 

1.5 

MANUFACTURING 
PROCESS OR IN-

SERVICE 
CONDITIONS 

The table shows the scaling exponents for some physiological parameters 

b Significance Example (b value) 

0 Parameter does not 
change with body mass 

Bone density in mammals, 
cell radius 

1 
Parameter changes in 
direct proportion with body 
mass 

Body volume, cell number 

0<b<1 
Parameter increases at a 
slower rate than body 
mass 

Metabolic rate (3/4), blood 
flow rate (3/4), external 
surface area (2/3), life span 
(1/4) 

>1 Parameter increases at a 
faster rate than body mass Bone mass (4/3) 

<0 Parameter decreases with 
increasing body mass 

Almost all frequencies or 
rates (cardiac frequency, 
respiratory frequency, -1/4) 

1.6 PUBLICATION ON 
THIS DATA 

[1] Ahluwalia A. Allometric scaling in-vitro. Sci Rep. 2017;7: 42113.  

[2] Ucciferri N, Sbrana T, Ahluwalia A. Allometric Scaling and Cell Ratios in 

bY =aM

3/4MR =aM
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Multi-Organ in vitro Models of Human Metabolism. Front Bioeng Biotechnol. 
2014;2: 74.  

 
2 GENERIC PHYSICS OF THE MODEL EQUATION  

2.0 MODEL TYPE 
AND NAME 

Allometric scaling models 

2.1 MODEL 
ENTITY 

Finite volumes 

2.2 

MODEL 
PHYSICS/ 

CHEMISTRY 
EQUATION  

PE 

Equation General allometric equation (1). Kleiber’s law (2) Michaeles 
Menten Oxygen consumption rate  (3), oxygen diffusion and 

reaction (4).  

 
  

 
𝑅=Vmax·𝑐/(𝐾𝑚+𝑐) (2) 
∇·(−𝐷∇𝑐)=𝑅−𝒖·∇𝑐 (3) 
 

Physical  
quantities  

D is the diffusion constant of oxygen, c is its concentration and R 
its volumetric consumption rate, which depends on maximal 
volumetric consumption rate (Vmax OCR, ρ) and Michaeles Menten 
constant (Km). u  is the velocity vector. Importantly Vmax depends 
on the cell packing density (ρ), and this is the principal physical 
quantity that an experimenter can decide.  

All data are from reference [1] and will be updated after input from 
experimenters. 

2.3 

MATERIALS 
RELATIONS 

 

Relation Not applicable 

Physical 
quantities/ 

descriptors 
for each MR 

Not applicable 

2.4 

PHYSICS 
FORMULATION 

OF THE 
CONDITIONS 

Not applicable 

2.5 SIMULATED 
INPUT 

Although the models will be run in isolation, there is scope for coupling with inputs 
from fluid dynamic and PBPK models. 

 

bY =aM
3/4MR =aM
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3 SOLVER AND COMPUTATIONAL TRANSLATION OF THE SPECIFICATIONS  

3.1 NUMERICAL 
SOLVER 

Most of the considerations will be analytical. However, oxygen reaction and 
diffusion evaluated in the computational regime can be equated with average 
cellular metabolic rates to determine the validity of Kleiber’s law in in-vitro devices 
following the methods described in ref [1]. 

3.2 SOFTWARE TOOL Matlab and COMOSL Multiphysics 

3.3 TIME STEP Not applicable 

3.4 

COMPUTATIONAL 
REPRESENTATION  

 

PHYSICS 
EQUATION, 
MATERIAL 

RELATIONS, 
MATERIAL 

In the analytical case we will use allometric scaling relationships 
to derive time of exposure and repeated dose frequency. Here, 
the equations to be employed are:  for time and 

 for rates or frequencies. 

In the computational case, considering a symmetrical spherical 
coordinate system, the basic relationships for correlating 
metabolic rate (MR) and cellular oxygen consumption in an in-
vitro construct of radius R, are:  

 

 

These equations can be solved numerically in COMSOL. 

3.5 
COMPUTATIONAL 

BOUNDARY 
CONDITIONS  

Stationary conditions will be employed. For the computation, the boundary 
conditions are constant dissolved oxygen concentration in the media as given by 
Henry’s law.  

3.6 
ADDITIONAL 

SOLVER 
PARAMETERS 

None 

MODEL 11: Quantitative trait-based models 

1 USER CASE  

1.1 

ASPECT OF THE 
USER CASE TO BE 

CALCULATED 

 

Quantitative trait-based models 

In more detail an example is provided here on the case of acute aquatic toxicity of 
spherical and rod-shaped copper nanoparticles for a series of daphnid species. 
The endpoint of assessment is the predicted toxicity of a given copper 
nanoparticles to a series of Daphnid species 

1.2 MATERIAL The particles of interest in this example are spherical and rod-shaped copper 
nanoparticles with sizes in between 25 and 500 nm. 

1.3 STRUCTURE 
A set of phys.chem. properties of the particles is required, including as a 
minimum: chemical composition (in this case the models are applicable only to Cu 
particles), particle size, particle volume, morphology. For each particle tested a 
different model is obtained as the endpoint of assessment is toxicity of Daphnid 

1/4T aM=
1/4f aM −=

2 max
2

m

V cc D cr
t r r r k c
∂ ∂ ∂⎛ ⎞= −⎜ ⎟∂ ∂ ∂ +⎝ ⎠

24
R

dcMR D R
dr

π=
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species to copper nanoparticles. 

1.4 TIME LAPSE The time lapse of the simulation is irrelevant in this case. 

1.5 

MANUFACTURING 
PROCESS OR IN-

SERVICE 
CONDITIONS 

The exposure conditions are restricted according to the OECD guideline that deals 
with toxicity testing of Daphnia species: OECD guideline 202. It is to be noted that 
the fate of the particles needs to be assessed in the test suspension as a function 
of exposure time, including assessment of particles aggregation, particle 
sedimentation, and rate of dissolution of the particles. 

The full reference of the OECD test guideline is: Organisation for Economic Co-
operation and Development. 2004. Test No. 202: Daphnia sp., acute 
immobilisation test and reproduction test. OECD Guidelines for the Testing of 
Chemicals. Paris, France. 

1.6 

PUBLICATION ON 
THIS ONE 

DATAMINING 
OPERATION 

L. Song, M. Vijver, G. de Snoo, W. Peijnenburg. Assessing toxicity of copper 
nanoparticles across five cladoceran species. Environ. Toxicol. Chem., 34, 1863-
1869, 2015. 

 
 

2 THE DATA-BASED MODEL 

2.1 MODEL NAME/TYPE Model name/type 

2.2 DATABASE AND 
TYPE 

INPUTS 

• Model input is information on the characteristics of 
daphnid species: volume, length and surface area of the 
animals. The type of information is continuous. 

• Pre-processing of information on volume, length and 
surface area of the animals is not needed. 

• No specific sources of input data are available. The 
original publication/data source contains experimental 
input data. These data may be supplemented with 
information from any source. 

OUTPUTS 

• The endpoint of assessment is the LC50 (i.e. the 
concentration of copper particles that causes 50 % 
mortality of specific daphnid species after 48 h of 
exposure). It is to be noted that this endpoint is dissimilar 
from LC50 values obtained after testing of copper 
nanoparticle suspensions as these suspensions contain 
Cu-ions which induce additional toxicity. The generated 
LC50-values are continuous. 

• No post-processing procedures are needed. 
• The only source of output data suited for (internal) 

validation is the reference given under the heading “User 
case”. 

2.3 EQUATION(S) 

HYPOTHESIS Particle toxicity is proportional to either the surface area, 
volume, or length of the animals tested. These animal 
properties are the ecological traits upon which the model is 
based. 

PHYSICAL 
QUANTITIES 

The model equation is of the general form: 

LC5048h = a + b * X, with X = either surface area, volume or 
body length of daphnias  
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3 COMPUTATIONAL DETAIL OF DATAMINING OPERATION 

3.1 NUMERICAL 
SOLVER 

Simple linear regression 

3.2 SOFTWARE TOOL Excel software 

3.6 MARGIN OF ERROR Statistics of the model are described in term of values of R2
adj, p, F.  

MODEL 12: Quantitative toxicity-toxicity model 

1 USER CASE  

1.1 
ASPECT OF THE 

USER CASE TO BE 
CALCULATED 

Model will be utilized to predict the ectoxicity based on the measured toxic effect 
for different organism. 

1.2 MATERIAL Nanomaterials studies within finished and/or on-going projects (e.g. NanoREG2, 
SUN, NANOIMUNE, etc.) related to nanosafety. 

1.3 STRUCTURE 
Appropriate types of nano-descriptors expressing the complexity of nano-
structures as well as their physicochemical properties will be developed. This will 
include for example: surface chemistry, surface charge, particle size and shape. 

1.4 TIME LAPSE Not applicable 

1.5 

MANUFACTURING 
PROCESS OR IN-

SERVICE 
CONDITIONS 

The changes of the structures and, in consequence the properties of 
nanomaterials in the external conditions will be investigated. The appropriate 
system-depended descriptors will be provided.  

1.6 

PUBLICATION ON 
THIS ONE 

DATAMINING 
OPERATION 

All developed models will be published.   

The application of existing formats and repositories (e.g. QMRF, QsarDB) for 
documenting QSAR models will be analysed in order to ensure reproducibility of 
the developed models (including easy transfer and exchange across different 
platform).  
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2 THE DATA-BASED MODEL 

2.1 MODEL NAME/TYPE 

Nano - (Quantitative) Toxicity – Toxicity Relationships (Nano(Q)TTR ) – 
developed by applying the statistical or machine learning algorithm to a training 
set containing a matrix of descriptors and measured biological effects (toxicity) 
with associated endpoint values. 

2.2 DATABASE AND 
TYPE 

INPUTS 

Endpoint (y) experimentally measured values of ecotoxicty 
gathered from available databases, if necessary 
logarithmically transformed. Quantitative as well as qualitative 
data will be investigated.  

Matrix of descriptors (X) calculated (e.g. electron affinity, 
surface charge) and/or experimentally measured biological 
effects. 

OUTPUTS Predicted values of ecotoxicicty and novel knowledge related 
to mechanism of toxicity of nanomaterials 

2.3 EQUATION(S) 

HYPOTHESIS Nano(Q)TTRs are based on the assumption that for 
structurally similar compounds the toxic effect should be 
comparable, and therefore, there is the possibility to predict 
one toxic effect based on another one.  

PHYSICAL 
QUANTITIES 

y = f(X), where: 

y – endpoint, X – descriptors and/or toxic effect 

 
3 COMPUTATIONAL DETAIL OF DATAMINING OPERATION 

3.1 NUMERICAL 
SOLVER 

To develop the models linear and non-linear chemometric techniques will be 
investigated, for example: multiple linear regressions, partial least squares 
regression and support vector machine. 

3.2 SOFTWARE TOOL 

Software developed in the frame of NanoBRIDGES project (EU FP7) 
(http://nanobridges.eu/software/) as well as other tools available for QSAR models 
development and validation (e.g. QSARINS, http://www.qsar.it/ , Double – Cross 
Validation, https://sites.google.com/site/dtclabdcv/) will be employed.  

3.6 MARGIN OF ERROR 

To assess the predictive ability and quality of Nano(Q)SAR models the 
parameters recommended by OECD will be applied. 
http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?doclanguage=e
n&cote=env/jm/mono(2007)2) 

 
 
 
 

 


